Imagen de Google Jackets

Statistics and Data Analysis for Financial Engineering [electronic resource] : with R examples / by David Ruppert, David S. Matteson.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Fecha de copyright: New York, NY : : Springer New York : : Imprint: Springer,, 2015Editor: 2015Edición: 2nd ed. 2015Descripción: XXVI, 719 páginas. 221 illus., 108 illus. in color. : online resourceTipo de contenido:
  • texto
Tipo de medio:
  • computador
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9781493926145
Tema(s): Clasificación CDD:
  • 330.015195 R866 23
Recursos en línea:
Contenidos:
Introduction -- Returns -- Fixed income securities -- Exploratory data analysis -- Modeling univariate distributions -- Resampling -- Multivariate statistical models -- Copulas -- Time series models: basics -- Time series models: further topics -- Portfolio theory -- Regression: basics -- Regression: troubleshooting -- Regression: advanced topics -- Cointegration -- The capital asset pricing model -- Factor models and principal components -- GARCH models -- Risk management -- Bayesian data analysis and MCMC -- Nonparametric regression and splines.
Resumen: Al hacerlo, ilustra conceptos utilizando mercados financieros y datos económicos, R Labs con ejercicios de datos reales y métodos gráficos y analíticos para modelar y diagnosticar errores de modelado. Estos métodos son críticos porque los ingenieros financieros ahora tienen acceso a enormes cantidades de datos. Para hacer uso de estos datos, son esenciales los poderosos métodos de este libro para trabajar con información cuantitativa, particularmente sobre volatilidad y riesgos. Las fortalezas de esta edición completamente revisada incluyen importantes adiciones al código R y los temas avanzados cubiertos. Los capítulos individuales cubren, entre otros temas, distribuciones multivariadas, cúpulas, cálculos bayesianos, gestión de riesgos y cointegración. Los requisitos previos sugeridos son conocimientos básicos de estadística y probabilidad, matrices y álgebra lineal y cálculo. Hay un apéndice sobre probabilidad, estadística y álgebra lineal. Los ingenieros financieros en ejercicio también encontrarán este libro de interés.
Valoración
    Valoración media: 0.0 (0 votos)

Incluye referencias bibliográficas e índice.

Introduction -- Returns -- Fixed income securities -- Exploratory data analysis -- Modeling univariate distributions -- Resampling -- Multivariate statistical models -- Copulas -- Time series models: basics -- Time series models: further topics -- Portfolio theory -- Regression: basics -- Regression: troubleshooting -- Regression: advanced topics -- Cointegration -- The capital asset pricing model -- Factor models and principal components -- GARCH models -- Risk management -- Bayesian data analysis and MCMC -- Nonparametric regression and splines.

Al hacerlo, ilustra conceptos utilizando mercados financieros y datos económicos, R Labs con ejercicios de datos reales y métodos gráficos y analíticos para modelar y diagnosticar errores de modelado. Estos métodos son críticos porque los ingenieros financieros ahora tienen acceso a enormes cantidades de datos. Para hacer uso de estos datos, son esenciales los poderosos métodos de este libro para trabajar con información cuantitativa, particularmente sobre volatilidad y riesgos. Las fortalezas de esta edición completamente revisada incluyen importantes adiciones al código R y los temas avanzados cubiertos. Los capítulos individuales cubren, entre otros temas, distribuciones multivariadas, cúpulas, cálculos bayesianos, gestión de riesgos y cointegración. Los requisitos previos sugeridos son conocimientos básicos de estadística y probabilidad, matrices y álgebra lineal y cálculo. Hay un apéndice sobre probabilidad, estadística y álgebra lineal. Los ingenieros financieros en ejercicio también encontrarán este libro de interés.

Electronic resource. Dordrecht : Springer Netherlands, 2015.

Con tecnología Koha