Imagen de Google Jackets

Principles of data mining [electronic resource] / by Max Bramer.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Fecha de copyright: London Springer London Imprint: Springer, 2016Editor: 2016Edición: Tercera edicionDescripción: XV, 526 p. 123 illus. : online resourceTipo de contenido:
  • texto
Tipo de medio:
  • computador
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9781447173076
Tema(s): Clasificación CDD:
  • 025.04 23
Recursos en línea:
Contenidos:
Introduction to Data Mining -- Data for Data Mining -- Introduction to Classification: Na© ve Bayes and Nearest Neighbour -- Using Decision Trees for Classification -- Decision Tree Induction: Using Entropy for Attribute Selection -- Decision Tree Induction: Using Frequency Tables for Attribute Selection -- Estimating the Predictive Accuracy of a Classifier -- Continuous Attributes -- Avoiding Overfitting of Decision Trees -- More About Entropy -- Inducing Modular Rules for Classification -- Measuring the Performance of a Classifier -- Dealing with Large Volumes of Data -- Ensemble Classification -- Comparing Classifiers -- Associate Rule Mining I -- Associate Rule Mining II -- Associate Rule Mining III -- Clustering -- Mining -- Classifying Streaming Data -- Classifying Streaming Data II: Time-dependent Data -- Appendix A - Essential Mathematics -- Appendix B - Datasets -- Appendix C - Sources of Further Information -- Appendix D - Glossary and Notation -- Appendix E - Solutions to Self-assessment Exercises -- Index.
En: Springer eBooksResumen: Este libro explica y explora las principales técnicas de minería de datos, la extracción automática de información implícita y potencialmente útil de los datos, que se utiliza cada vez más en áreas comerciales, científicas y otras áreas de aplicación. Se centra en la clasificación, la minería de reglas de asociación y la agrupación.Cada tema se explica claramente, con un enfoque en algoritmos, no formalismo matemático, y se ilustra con ejemplos detallados y trabajados. El libro está escrito para lectores sin una sólida formación en matemáticas o estadísticas y las fórmulas utilizadas se explican en detalle.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura topográfica Estado Fecha de vencimiento Código de barras
Libros electrónicos Libros electrónicos Institución Universitaria Mayor de Cartagena - Sede Centro CF 025.04 B815 (Navegar estantería(Abre debajo)) Disponible

Incluye referencias bibliográficas e índice.

Introduction to Data Mining -- Data for Data Mining -- Introduction to Classification: Na© ve Bayes and Nearest Neighbour -- Using Decision Trees for Classification -- Decision Tree Induction: Using Entropy for Attribute Selection -- Decision Tree Induction: Using Frequency Tables for Attribute Selection -- Estimating the Predictive Accuracy of a Classifier -- Continuous Attributes -- Avoiding Overfitting of Decision Trees -- More About Entropy -- Inducing Modular Rules for Classification -- Measuring the Performance of a Classifier -- Dealing with Large Volumes of Data -- Ensemble Classification -- Comparing Classifiers -- Associate Rule Mining I -- Associate Rule Mining II -- Associate Rule Mining III -- Clustering -- Mining -- Classifying Streaming Data -- Classifying Streaming Data II: Time-dependent Data -- Appendix A - Essential Mathematics -- Appendix B - Datasets -- Appendix C - Sources of Further Information -- Appendix D - Glossary and Notation -- Appendix E - Solutions to Self-assessment Exercises -- Index.

Este libro explica y explora las principales técnicas de minería de datos, la extracción automática de información implícita y potencialmente útil de los datos, que se utiliza cada vez más en áreas comerciales, científicas y otras áreas de aplicación. Se centra en la clasificación, la minería de reglas de asociación y la agrupación.Cada tema se explica claramente, con un enfoque en algoritmos, no formalismo matemático, y se ilustra con ejemplos detallados y trabajados. El libro está escrito para lectores sin una sólida formación en matemáticas o estadísticas y las fórmulas utilizadas se explican en detalle.

Con tecnología Koha