Machine Learning in Medicine - a Complete Overview (Registro nro. 87728)

Detalles MARC
000 -LEADER
fixed length control field 08789nam a2200349 a 4500
003 - CONTROL NUMBER IDENTIFIER
control field co-ctgiumayor
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240708114846.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu---uuuuu
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 150327s2015 s 000 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783319151953
040 ## - CATALOGING SOURCE
Original cataloging agency CO-CtgIUMC
Language of cataloging spa
Transcribing agency coctgiumc
Modifying agency rda
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
Item number C628
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Cleophas, Ton J. M.,
Relator term autor.
245 10 - TITLE STATEMENT
Title Machine Learning in Medicine - a Complete Overview
Medium [electronic resource] /
Statement of responsibility, etc. by Ton J. Cleophas, Aeilko H. Zwinderman.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Cham : :
Name of producer, publisher, distributor, manufacturer Springer International Publishing : :
-- Imprint: Springer,,
Date of production, publication, distribution, manufacture, or copyright notice 2015
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice 2015
300 ## - PHYSICAL DESCRIPTION
Extent XXIV, 516 páginas. 159 illus. :
Other physical details online resource.
336 ## - CONTENT TYPE
Content type term texto
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computador
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term recurso en línea
Carrier type code cr
Source rdacarrier
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Incluye referencias bibliográficas e índice.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Preface. Section I Cluster and Classification Models -- Hierarchical Clustering and K-means Clustering to Identify{phono} Subgroups in Surveys (50 Patients) -- Density-based Clustering to Identify Outlier Groups in Otherwise Homogeneous Data (50 Patients) -- Two Step Clustering to Identify Subgroups and Predict Subgroup Memberships in Individual Future Patients (120 Patients)- Nearest Neighbors for Classifying New Medicines (2 New and 25 Old Opioids)- Predicting High-Risk-Bin Memberships (1445 Families) -- Predicting Outlier Memberships (2000 Patients) -- Data Mining for Visualization of Health Processes (150 Patients) -- 8{phono} Trained Decision Trees for a More Meaningful Accuracy (150 Patients) -- Typology of Medical Data (51 Patients) -- Predictions from Nominal Clinical Data (450 Patients) -- Predictions from Ordinal Clinical Data (450 Patients) -- Assessing Relative Health Risks (3000 Subjects) -- Measurement Agreements (30 Patients) -- Column Proportions for Testing Differences between Outcome Scores (450 Patients) -- Pivoting Trays and Tables for Improved Analysis of Multidimensional Data (450 Patients) -- Online Analytical Procedure Cubes for a More Rapid Approach to{phono} Analyzing Frequencies (450 Patients) -- Restructure Data Wizard for Data Classified the Wrong Way (20 Patients).-{phono} Control Charts for Quality Control of Medicines (164 Tablet Disintegration Times) -- Section II (Log) Linear Models -- Linear, Logistic, and Cox Regression for Outcome Prediction with Unpaired Data (20, 55, and 60 Patients).-{phono} Generalized Linear Models for Outcome Prediction with Paired Data (100 Patients and 139 Physicians) -- Generalized Linear Models for Predicting Event-Rates (50 Patients).-{phono} Factor Analysis and Partial Least Squares (PLS) for Complex-Data Reduction (250 Patients) -- Optimal Scaling of High-sensitivity Analysis of Health Predictors (250 Patients) -- Discriminant Analysis for Making a Diagnosis from Multiple Outcomes (45 Patients) -- Weighted Least Squares for Adjusting Efficacy Data with{phono} Inconsistent Spread (78 Patients) -- Partial Correlations for Removing Interaction Effects from Efficacy Data (64 Patients) -- Canonical Regression for Overall Statistics of Multivariate Data (250 Patients) -- Multinomial Regression for Outcome Categories (55 Patients) -- Various Methods for Analyzing Predictor Categories (60 and 30 Patients) -- Random Intercept Models for Both Outcome and Predictor Categories (55 Patients).-{phono} Automatic Regression for Maximizing Linear Relationships (55 Patients) -- Simulation Models for Varying Predictors (9000 Patients) -- Generalized Linear Mixed Models for Outcome Prediction from Mixed Data (20 Patients) -- Two Stage Least Squares for Linear Models with Problematic Predictors (35 Patients) -- Autoregressive Models for Longitudinal Data (120 Monthly Population Records) -- Variance Components for Assessing the Magnitude of Random Effects (40 Patients) -- Ordinal Scaling for Clinical Scores with Inconsistent Intervals (900 Patients) -- Loglinear Models for Assessing Incident Rates with Varying Incident Risks (12 Populations).-{phono} Loglinear Models for Outcome Categories (445 Patients) -- Heterogeneity in Clinical Research: Mechanisms Responsible (20 Studies) -- Performance Evaluation of Novel Diagnostic Tests (650 and 588 Patients).-{phono} Quantile - Quantile Plots, a Good Start for Looking at Your Medical Data (50 Cholesterol Measurements and 52 Patients) -- Rate Analysis of Medical Data Better than Risk Analysis (52 Patients) -- Trend Tests Will Be Statistically Significant if Traditional Tests Are not (30 and 106 Patients) -- Doubly Multivariate Analysis of Variance for Multiple Observations from Multiple Outcome Variables (16 Patients) -- Probit Models for Estimating Effective Pharmacological Treatment Dosages (14 Tests) -- Interval Censored Data Analysis for Assessing Mean Time to Cancer Relapse (51 Patients).-{phono} Structural Equation Modeling with SPSS Analysis of Moment Structures (Amos) for Cause Effect Relationships I (35 Patients) -- Structural Equation Modeling with SPSS Analysis of Moment Structures (Amos) for Cause Effect Relationships II (35 Patients) -- Section III Rules Models -- Neural Networks for Assessing Relationships that are Typically Nonlinear (90 Patients). Complex Samples Methodologies for Unbiased Sampling (9,678 Persons) -- Correspondence Analysis for Identifying the Best of Multiple Treatments in Multiple Groups (217 Patients) -- Decision Trees for Decision Analysis (1004 and 953 Patients).-Multidimensional Scaling for Visualizing Experienced Drug Efficacies (14 Pain-killers and 42 Patients) -- Stochastic Processes for Long Term Predictions from Short Term Observations -- Optimal Binning for Finding High Risk Cut-offs (1445 Families).-{phono} Conjoint Analysis for Determining the Most Appreciated Properties of Medicines to Be Developed (15 Physicians) -- Item Response Modeling for Analyzing Quality of Life with Better Precision (1000 Patients) -- Survival Studies with Varying Risks of Dying (50 and 60 Patients) -- Fuzzy Logic for Improved Precision of Pharmacological Data Analysis (9 Induction Dosages) -- Automatic Data Mining for the Best Treatment of a Disease (90 Patients) -- Pareto Charts for Identifying the Main Factors of Multifactorial Outcomes (2000 Admissions to Hospital) -- Radial Basis Neural Networks for Multidimensional Gaussian Data (90 persons) -- Automatic Modeling for Drug Efficacy Prediction (250 Patients) -- Automatic Modeling for Clinical Event Prediction (200 Patients) -- Automatic Newton Modeling in Clinical Pharmacology (15 Alfentanil dosages, 15 Quinidine time-concentration relationships) -- Spectral Plots for High Sensitivity Assessment of Periodicity (6 Years{acute} Monthly C Reactive Protein Levels) -- Runs Test for Identifying Best Analysis Models (21 Estimates of Quantity and Quality of Patient Care) -- Evolutionary Operations for Health Process Improvement (8 Operation Room Settings).-{phono} Bayesian Networks for Cause Effect Modeling (600 Patients) -- Support Vector Machines for Imperfect Nonlinear Data -- {phono} Multiple Response Sets for Visualizing Clinical Data Trends (811 Patient Visits) -- Protein and DNA Sequence Mining -- Iteration Methods for Crossvalidation (150 Patients) -- Testing Parallel-groups with Different Sample Sizes and Variances (5 Parallel-group Studies) -- Association Rules between Exposure and Outcome (50 and 60 Patients) -- Confidence Intervals for Proportions and Differences in{phono} Proportions (100 and 75 Patients) -- Ratio Statistics for Efficacy Analysis of New Drugs 50 Patients).-{phono} Fifth Order Polynomes of Circadian Rhythms (1 Patient) -- Gamma Distribution for Estimating the Predictors of Medical Outcomes (110 Patients) Index.
520 ## - SUMMARY, ETC.
Summary, etc. La cantidad de datos almacenados en las bases de datos del mundo se duplica cada 20 meses, y los médicos, familiarizados con los métodos estadísticos tradicionales, no pueden analizarlos. Los métodos tradicionales tienen, de hecho, dificultades para identificar valores atípicos en grandes conjuntos de datos y para encontrar patrones en grandes datos y datos con múltiples variables de exposición / resultado. Además, faltan esencialmente las reglas de análisis para encuestas y cuestionarios, que actualmente son métodos comunes de recolección de datos. Afortunadamente, la nueva disciplina, el aprendizaje automático, puede cubrir todas estas limitaciones.
533 ## - REPRODUCTION NOTE
Type of reproduction Electronic resource.
Place of reproduction Dordrecht :
Agency responsible for reproduction Springer Netherlands,
Date of reproduction 2015.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Medicina.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Ciencia (General)
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Estadística.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Zwinderman, Aeilko H.,
Relator term autor.
856 ## - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://drive.google.com/file/d/1FiBNLOkuubbNF0jwS97FlOe1r1bvis3S/view?usp=sharing">https://drive.google.com/file/d/1FiBNLOkuubbNF0jwS97FlOe1r1bvis3S/view?usp=sharing</a>
Public note Dar click aqui para ver texto completo
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Libros electrónicos
Source of classification or shelving scheme Dewey Decimal Classification
Existencias
Withdrawn status Lost status Damaged status Not for loan Home library Current library Date acquired Total checkouts Full call number Date last seen Price effective from Koha item type
        Institución Universitaria Mayor de Cartagena - Sede Centro Institución Universitaria Mayor de Cartagena - Sede Centro 02/11/2024   610 C628 02/11/2024 02/11/2024 Libros electrónicos

Con tecnología Koha