Detalles MARC
000 -LEADER |
fixed length control field |
08789nam a2200349 a 4500 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
co-ctgiumayor |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20240708114846.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS |
fixed length control field |
m d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
cr cnu---uuuuu |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
150327s2015 s 000 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9783319151953 |
040 ## - CATALOGING SOURCE |
Original cataloging agency |
CO-CtgIUMC |
Language of cataloging |
spa |
Transcribing agency |
coctgiumc |
Modifying agency |
rda |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
610 |
Item number |
C628 |
Edition number |
23 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Cleophas, Ton J. M., |
Relator term |
autor. |
245 10 - TITLE STATEMENT |
Title |
Machine Learning in Medicine - a Complete Overview |
Medium |
[electronic resource] / |
Statement of responsibility, etc. |
by Ton J. Cleophas, Aeilko H. Zwinderman. |
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE |
Place of production, publication, distribution, manufacture |
Cham : : |
Name of producer, publisher, distributor, manufacturer |
Springer International Publishing : : |
-- |
Imprint: Springer,, |
Date of production, publication, distribution, manufacture, or copyright notice |
2015 |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE |
Date of production, publication, distribution, manufacture, or copyright notice |
2015 |
300 ## - PHYSICAL DESCRIPTION |
Extent |
XXIV, 516 páginas. 159 illus. : |
Other physical details |
online resource. |
336 ## - CONTENT TYPE |
Content type term |
texto |
Content type code |
txt |
Source |
rdacontent |
337 ## - MEDIA TYPE |
Media type term |
computador |
Media type code |
c |
Source |
rdamedia |
338 ## - CARRIER TYPE |
Carrier type term |
recurso en línea |
Carrier type code |
cr |
Source |
rdacarrier |
504 ## - BIBLIOGRAPHY, ETC. NOTE |
Bibliography, etc. note |
Incluye referencias bibliográficas e índice. |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Preface. Section I Cluster and Classification Models -- Hierarchical Clustering and K-means Clustering to Identify{phono} Subgroups in Surveys (50 Patients) -- Density-based Clustering to Identify Outlier Groups in Otherwise Homogeneous Data (50 Patients) -- Two Step Clustering to Identify Subgroups and Predict Subgroup Memberships in Individual Future Patients (120 Patients)- Nearest Neighbors for Classifying New Medicines (2 New and 25 Old Opioids)- Predicting High-Risk-Bin Memberships (1445 Families) -- Predicting Outlier Memberships (2000 Patients) -- Data Mining for Visualization of Health Processes (150 Patients) -- 8{phono} Trained Decision Trees for a More Meaningful Accuracy (150 Patients) -- Typology of Medical Data (51 Patients) -- Predictions from Nominal Clinical Data (450 Patients) -- Predictions from Ordinal Clinical Data (450 Patients) -- Assessing Relative Health Risks (3000 Subjects) -- Measurement Agreements (30 Patients) -- Column Proportions for Testing Differences between Outcome Scores (450 Patients) -- Pivoting Trays and Tables for Improved Analysis of Multidimensional Data (450 Patients) -- Online Analytical Procedure Cubes for a More Rapid Approach to{phono} Analyzing Frequencies (450 Patients) -- Restructure Data Wizard for Data Classified the Wrong Way (20 Patients).-{phono} Control Charts for Quality Control of Medicines (164 Tablet Disintegration Times) -- Section II (Log) Linear Models -- Linear, Logistic, and Cox Regression for Outcome Prediction with Unpaired Data (20, 55, and 60 Patients).-{phono} Generalized Linear Models for Outcome Prediction with Paired Data (100 Patients and 139 Physicians) -- Generalized Linear Models for Predicting Event-Rates (50 Patients).-{phono} Factor Analysis and Partial Least Squares (PLS) for Complex-Data Reduction (250 Patients) -- Optimal Scaling of High-sensitivity Analysis of Health Predictors (250 Patients) -- Discriminant Analysis for Making a Diagnosis from Multiple Outcomes (45 Patients) -- Weighted Least Squares for Adjusting Efficacy Data with{phono} Inconsistent Spread (78 Patients) -- Partial Correlations for Removing Interaction Effects from Efficacy Data (64 Patients) -- Canonical Regression for Overall Statistics of Multivariate Data (250 Patients) -- Multinomial Regression for Outcome Categories (55 Patients) -- Various Methods for Analyzing Predictor Categories (60 and 30 Patients) -- Random Intercept Models for Both Outcome and Predictor Categories (55 Patients).-{phono} Automatic Regression for Maximizing Linear Relationships (55 Patients) -- Simulation Models for Varying Predictors (9000 Patients) -- Generalized Linear Mixed Models for Outcome Prediction from Mixed Data (20 Patients) -- Two Stage Least Squares for Linear Models with Problematic Predictors (35 Patients) -- Autoregressive Models for Longitudinal Data (120 Monthly Population Records) -- Variance Components for Assessing the Magnitude of Random Effects (40 Patients) -- Ordinal Scaling for Clinical Scores with Inconsistent Intervals (900 Patients) -- Loglinear Models for Assessing Incident Rates with Varying Incident Risks (12 Populations).-{phono} Loglinear Models for Outcome Categories (445 Patients) -- Heterogeneity in Clinical Research: Mechanisms Responsible (20 Studies) -- Performance Evaluation of Novel Diagnostic Tests (650 and 588 Patients).-{phono} Quantile - Quantile Plots, a Good Start for Looking at Your Medical Data (50 Cholesterol Measurements and 52 Patients) -- Rate Analysis of Medical Data Better than Risk Analysis (52 Patients) -- Trend Tests Will Be Statistically Significant if Traditional Tests Are not (30 and 106 Patients) -- Doubly Multivariate Analysis of Variance for Multiple Observations from Multiple Outcome Variables (16 Patients) -- Probit Models for Estimating Effective Pharmacological Treatment Dosages (14 Tests) -- Interval Censored Data Analysis for Assessing Mean Time to Cancer Relapse (51 Patients).-{phono} Structural Equation Modeling with SPSS Analysis of Moment Structures (Amos) for Cause Effect Relationships I (35 Patients) -- Structural Equation Modeling with SPSS Analysis of Moment Structures (Amos) for Cause Effect Relationships II (35 Patients) -- Section III Rules Models -- Neural Networks for Assessing Relationships that are Typically Nonlinear (90 Patients). Complex Samples Methodologies for Unbiased Sampling (9,678 Persons) -- Correspondence Analysis for Identifying the Best of Multiple Treatments in Multiple Groups (217 Patients) -- Decision Trees for Decision Analysis (1004 and 953 Patients).-Multidimensional Scaling for Visualizing Experienced Drug Efficacies (14 Pain-killers and 42 Patients) -- Stochastic Processes for Long Term Predictions from Short Term Observations -- Optimal Binning for Finding High Risk Cut-offs (1445 Families).-{phono} Conjoint Analysis for Determining the Most Appreciated Properties of Medicines to Be Developed (15 Physicians) -- Item Response Modeling for Analyzing Quality of Life with Better Precision (1000 Patients) -- Survival Studies with Varying Risks of Dying (50 and 60 Patients) -- Fuzzy Logic for Improved Precision of Pharmacological Data Analysis (9 Induction Dosages) -- Automatic Data Mining for the Best Treatment of a Disease (90 Patients) -- Pareto Charts for Identifying the Main Factors of Multifactorial Outcomes (2000 Admissions to Hospital) -- Radial Basis Neural Networks for Multidimensional Gaussian Data (90 persons) -- Automatic Modeling for Drug Efficacy Prediction (250 Patients) -- Automatic Modeling for Clinical Event Prediction (200 Patients) -- Automatic Newton Modeling in Clinical Pharmacology (15 Alfentanil dosages, 15 Quinidine time-concentration relationships) -- Spectral Plots for High Sensitivity Assessment of Periodicity (6 Years{acute} Monthly C Reactive Protein Levels) -- Runs Test for Identifying Best Analysis Models (21 Estimates of Quantity and Quality of Patient Care) -- Evolutionary Operations for Health Process Improvement (8 Operation Room Settings).-{phono} Bayesian Networks for Cause Effect Modeling (600 Patients) -- Support Vector Machines for Imperfect Nonlinear Data -- {phono} Multiple Response Sets for Visualizing Clinical Data Trends (811 Patient Visits) -- Protein and DNA Sequence Mining -- Iteration Methods for Crossvalidation (150 Patients) -- Testing Parallel-groups with Different Sample Sizes and Variances (5 Parallel-group Studies) -- Association Rules between Exposure and Outcome (50 and 60 Patients) -- Confidence Intervals for Proportions and Differences in{phono} Proportions (100 and 75 Patients) -- Ratio Statistics for Efficacy Analysis of New Drugs 50 Patients).-{phono} Fifth Order Polynomes of Circadian Rhythms (1 Patient) -- Gamma Distribution for Estimating the Predictors of Medical Outcomes (110 Patients) Index. |
520 ## - SUMMARY, ETC. |
Summary, etc. |
La cantidad de datos almacenados en las bases de datos del mundo se duplica cada 20 meses, y los médicos, familiarizados con los métodos estadísticos tradicionales, no pueden analizarlos. Los métodos tradicionales tienen, de hecho, dificultades para identificar valores atípicos en grandes conjuntos de datos y para encontrar patrones en grandes datos y datos con múltiples variables de exposición / resultado. Además, faltan esencialmente las reglas de análisis para encuestas y cuestionarios, que actualmente son métodos comunes de recolección de datos. Afortunadamente, la nueva disciplina, el aprendizaje automático, puede cubrir todas estas limitaciones. |
533 ## - REPRODUCTION NOTE |
Type of reproduction |
Electronic resource. |
Place of reproduction |
Dordrecht : |
Agency responsible for reproduction |
Springer Netherlands, |
Date of reproduction |
2015. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name entry element |
Medicina. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name entry element |
Ciencia (General) |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name entry element |
Estadística. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Zwinderman, Aeilko H., |
Relator term |
autor. |
856 ## - ELECTRONIC LOCATION AND ACCESS |
Uniform Resource Identifier |
<a href="https://drive.google.com/file/d/1FiBNLOkuubbNF0jwS97FlOe1r1bvis3S/view?usp=sharing">https://drive.google.com/file/d/1FiBNLOkuubbNF0jwS97FlOe1r1bvis3S/view?usp=sharing</a> |
Public note |
Dar click aqui para ver texto completo |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Koha item type |
Libros electrónicos |
Source of classification or shelving scheme |
Dewey Decimal Classification |